Fatás, A. ve Mihov, I. (2001), “The Effects of Fiscal Policy on Consumption and Employment: Theory and Evidence”, CEPR Discussion Paper, 2760, Centre for Economic Policy Research.
D’Alessandro, A. (2010), “How can Government Spending Affect Private Consumption? A Panel Cointegration Approach”, European Journal of Economics, Finance and Administrative Sciences, 18, 40-57.
Hjelm, G. (2002), “Is Private Consumption Growth Higher (Lower) During Periods of Fiscal Contractions (Expansions)?”, Journal of Macroeconomics, 24(1), 17- 39.
Nieh, C.C. ve Ho, T. (2006), “Does the Expansionary Government Spending Crowd out the Private Consumption? Cointegration Analysis in Panel Data”, The Quarterly Review of Economics and Finance, 46, 133-148.
Gali, J., Salido, L.D.J. ve Valles, J. (2007), “Understanding the Effects of Government Spending on Consumption”, Journal of the European Economic Association, 5(1), 227-270.
Egrioglu, E., Aladag, C.H., Yolcu, U., Uslu, V.R. and Başaran, M.A., 2010. Finding an optimal interval length in high order fuzzy time series, Expert Systems with Applications, 37, 5052-5055.
Egrioglu, E., Aladag, C.H., Başaran, M.A., Uslu, V.R. and Yolcu, U., 2011. A New Approach Based on the Optimization of the Length of Intervals in Fuzzy Time Series, Journal of Intelligent and Fuzzy Systems, 22, 15-19.
Huarng, K. and Yu, T. H. K., 2006a. Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Transactions on Systems, Man,, and Cybernetics-Part B: Cybernetics, 36, 328-340.
Cheng, C. H., Cheng, G. W. and Wang, J. W., 2008. Multi-attribute fuzzy time series method based on fuzzy clustering, Expert Systems with Applications, 34, 1235-1242.
Li, S. T., Cheng, Y. C. and Lin, S. Y., 2008. A FCM-based deterministic forecasting model for fuzzy time series,Computers and Mathematics with Applications, 56, 3052-3063.
Alpaslan, F. and Cagcag, O., 2012. A Seasonal Fuzzy Time Series Forecasting Method Based On Gustafson-Kessel Fuzzy Clustering, Journal of social and Economic Statistics, 2(1), 1-13.
Alpaslan, F., Cagcag, O., Aladag, C. H., Yolcu, U. and Egrioglu, E., 2012. A Novel Seasonal Fuzzy Time Series Method, Hacettepe Journal of Mathematics and Statistics, 43, 375-385.
Egrioglu, E., 2012. A New Time Invariant Fuzzy Time Series Forecasting Method Based On Genetic Algorithm, Advances in Fuzzy Systems, Volume 2012, Article ID 785709, pp.6.
Egrioglu, E., Aladag, C.H. and Yolcu, U., 2013. A Hybrid Fuzzy Time Series Forecasting Model Based on Fuzzy C-Means and Artificial Neural Networks, Expert Systems with Applications, 40, 854-857.
Aladag, C.H., Başaran, M.A., Egrioglu E., Yolcu, U. and Uslu V.R., 2009. Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations, Expert Systems with Applications, 36, 4228-4231.
Yolcu, U., Aladag, C.H., Egrioglu, E. and Uslu, V.R., 2013. Time series forecasting with a novel fuzzy time series approach: an example for İstanbul stock market, Journal of Computational and Statistics Simulation, 83(4), 597-610.
Przetwarzamy dane osobowe zbierane podczas odwiedzania serwisu. Realizacja funkcji pozyskiwania informacji o użytkownikach i ich zachowaniu odbywa się poprzez dobrowolnie wprowadzone w formularzach informacje oraz zapisywanie w urządzeniach końcowych plików cookies (tzw. ciasteczka). Dane, w tym pliki cookies, wykorzystywane są w celu realizacji usług, zapewnienia wygodnego korzystania ze strony oraz w celu monitorowania ruchu zgodnie z Polityką prywatności. Dane są także zbierane i przetwarzane przez narzędzie Google Analytics (więcej).
Możesz zmienić ustawienia cookies w swojej przeglądarce. Ograniczenie stosowania plików cookies w konfiguracji przeglądarki może wpłynąć na niektóre funkcjonalności dostępne na stronie.